97,675 research outputs found

    Pyrite oxidation under initially neutral pH conditions and in the presence of Acidithiobacillus ferrooxidans and micromolar hydrogen peroxide

    Get PDF
    Hydrogen peroxide (H2O2) at a micromolar level played a role in the microbial surface oxidation of pyrite crystals under initially neutral pH. When the mineral-bacteria system was cyclically exposed to 50 μM H2O2, the colonization of Acidithiobacillus ferrooxidans onto the mineral surface was markedly enhanced, as compared to the control(no added H2O2). This can be attributed to the effects of H2O2 on increasing the roughness of the mineral surfaces, as well as the acidity and Fe2+ concentration at the mineral-solution interfaces. All of these effects tended to create more favourable nanoto micro-scale environments in the mineral surfaces for the cell adsorption. However, higher H2O2 levels inhibited the attachment of cells onto the mineral surfaces, possibly due to the oxidative stress in the bacteria when they approached the mineral surfaces where high levels of free radicals are present as a result of Fenton-like reactions. The more aggressive nature of H2O2 as an oxidant caused marked surface flaking of the mineral surface. The XPS results suggest that H2O2 accelerated the oxidation of pyrite-S and consequently facilitated the overall corrosion cycle of pyrite surfaces. This was accompanied by pH drop in the solution in contact with the pyrite cubes

    Quantum Monte Carlo Study of Pairing Symmetry and Correlation in Iron-based Superconductors

    Full text link
    We perform a systematic quantum Monte Carlo study of the pairing correlation in the S4S_4 symmetric microscopic model for iron-based superconductors. It is found that the pairing with an extensive s-wave symmetry robustly dominates over other pairings at low temperature in reasonable parameter region. The pairing susceptibility, the effective pairing interaction and the (π,0)(\pi,0)antiferromagnetic correlation strongly increase as the on-site Coulomb interaction increases, indicating the importance of the effect of electron-electron correlation. Our non-biased numerical results provide a unified understanding of superconducting mechanism in iron-pnictides and iron-chalcogenides and demonstrate that the superconductivity is driven by strong electron-electron correlation effects.Comment: Accepted for publication as a Letter in Physical Review Letters, and more discussions are adde

    Iteration Complexity Analysis of Multi-Block ADMM for a Family of Convex Minimization without Strong Convexity

    Get PDF
    The alternating direction method of multipliers (ADMM) is widely used in solving structured convex optimization problems due to its superior practical performance. On the theoretical side however, a counterexample was shown in [7] indicating that the multi-block ADMM for minimizing the sum of NN (N3)(N\geq 3) convex functions with NN block variables linked by linear constraints may diverge. It is therefore of great interest to investigate further sufficient conditions on the input side which can guarantee convergence for the multi-block ADMM. The existing results typically require the strong convexity on parts of the objective. In this paper, we present convergence and convergence rate results for the multi-block ADMM applied to solve certain NN-block (N3)(N\geq 3) convex minimization problems without requiring strong convexity. Specifically, we prove the following two results: (1) the multi-block ADMM returns an ϵ\epsilon-optimal solution within O(1/ϵ2)O(1/\epsilon^2) iterations by solving an associated perturbation to the original problem; (2) the multi-block ADMM returns an ϵ\epsilon-optimal solution within O(1/ϵ)O(1/\epsilon) iterations when it is applied to solve a certain sharing problem, under the condition that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz property, which essentially covers most convex optimization models except for some pathological cases.Comment: arXiv admin note: text overlap with arXiv:1408.426
    corecore